If it's not what You are looking for type in the equation solver your own equation and let us solve it.
21m^2-13+2=0
We add all the numbers together, and all the variables
21m^2-11=0
a = 21; b = 0; c = -11;
Δ = b2-4ac
Δ = 02-4·21·(-11)
Δ = 924
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{924}=\sqrt{4*231}=\sqrt{4}*\sqrt{231}=2\sqrt{231}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{231}}{2*21}=\frac{0-2\sqrt{231}}{42} =-\frac{2\sqrt{231}}{42} =-\frac{\sqrt{231}}{21} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{231}}{2*21}=\frac{0+2\sqrt{231}}{42} =\frac{2\sqrt{231}}{42} =\frac{\sqrt{231}}{21} $
| k/6+8=23 | | 10/5+a=2 | | 8/15-p/15=-4/5-p/5 | | a^2-8a+16=10 | | 22=21y-1 | | -45=-10-7k | | -3-2y+3+2y=20 | | 3x=3(6) | | 3y+7=-25 | | 4r+4+6=-15+3r | | x+45=18 | | 5x+3x+4x=18 | | –3(x–5)+2x=50 | | 2x-6+2x=x-3x+12 | | 6x+5=6x+21x | | 1/3n+2=2/3(n+3) | | y÷4+6=13 | | 30–12÷(2x3)=+1 | | 3+2x-17-2x=20 | | 16-f=2(6-3f) | | 12/28=n/14 | | 4x+23=9x+38 | | 4/n=20/15 | | x+2/3=7/12 | | a=1/125 | | 3x+2x+21=5x+23 | | 3(n+40=21 | | 10x(x+1)=5(2x+2) | | 3p+9=2p-8 | | 85+55=8x | | -2(5x+6)+8+3x=17 | | p^2-16p+64=3 |